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LETTER TO THE EDITOR 

Orthogonality catastrophe in Coulomb glass 
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Department of Physics, Massachusetts Institute of Technology, Cambridge, MA 02139, 
USA and AT & T Bell Laboratories, Murray Hill, NJ 07974, USA 

Received 20 September 1990 

Abstract. It is shown that in the presence of weak quantum mechanical tunnelling, an 
orthogonality catastrophe type of effect is found in Coulomb glass systems in 3~ and ZD, 
under the application of a long-ranged 1,” type potential. Some physical implications of the 
effect are discussed. 

It is well known that the response of a non-interacting electron gas to the sudden 
application of an external potential is singular at long times (orthogonality catastrophe) 
(Anderson 1967, see also Mahan 1974). This phenomenon can be understood by con- 
sidering the overlap integral between the two ground states before and after the external 
potential is switched on (Anderson 1967), 

where Ef and Ef, are the Fermi energies of the system in the absence and presence of 
the external potential, respectively, and n and n’ are the corresponding one-particle 
eigenstates. Ann, is the overlap integral between the eigenstates n and n’. In metals, it is 
found that (GIG’)+ (l /N)@ when N+ x, where N is the number of electrons present 
in the system and (Y is a positive number. This particular behaviour shows up in, for 
example, x-ray absorption experiments where the absorption spectrum exhibits a power 
law behaviour W* at the absorption threshold (see e.g. Mahan 1974,1981). Physically, 
this behaviour occurs when the number of available states n,n’ having appreciable 
magnitude of lA,,,,,(2 is large, so although individual values of IA,,,,,12 may be small, the 
product of factors (1 - 2 E ,  ,Ef IA ,,,,, I 2, becomes vanishingly small when the number 
of electrons present in the system goes to infinity. For weak external perturbations the 
factor lA,,,,,/2 can be large only when the energies E,, and E,,, are close in value, so that 
the dominating contributions are from low-energy particle-hole excitations under the 
application of the external potential. 

The problem which interests us is whether this phenomenon is also found in Coulomb 
glass systems where electrons are strongly localized. For example, electrons in the 
impurity band of lightly-doped, compensated semiconductors or in amorphous semi- 
conductors (see e.g. Pollak and Ortuno 1985 and Efros and Shklovskii 1985). In particu- 
lar, we are interested in the situation in which the suddenly applied potential is of the 
form u(r )  = Z e 2 / r ,  i.e. a long-ranged Coulomb potential. This potential is interesting 
for two reasons: 
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(i) because of the weak screening effect (see discussion below) it turns out that in a 
photo-emission experiment on deep core electronic states, the 'suddenly' appearing 
potential generated by the ionized atom is essentially an unscreened Coulomb potential, 
and 

(ii) because electrons are localized the main effect of adding or removing an electron 
from a Coulomb glass system is the introduction of a Coulomb potential. 
Therefore, this process also determines the one-particle properties of the Coulomb glass 
system. 

This problem has been discussed by Efros and Shklovskii (1975, 1976, see also 
Baranovskii et a1 1980) for the case in which electrons are completely localized (i.e. 
electron hopping is strictly prohibited). They found that the low energy behaviour of 
this 'classical' system is dominated by two features: 

(i) the presence of a soft gap in the one-particle density of states (Coulomb gap), 
and 

(ii) the existence of a constant density of states for particle-hole excitations (Efros 
and Shklovskii 1975,1976,1985, Davies et a1 1984). We shall consider the more realistic 
situation in which a small quantum mechanical overlap integral Z(r) - ZOe-""o also exists 
between different localized states separated by a distance r ,  where a. - interatomic 
distance, so relaxation of the system by tunnelling is allowed in the presence of an 
external potential. 

To describe the Coulomb glass system we follow the model introduced by Shklovskii 
and Efros (1981) in which electrons occupy sites of a periodic lattice of lattice constant 
ao. There are twice as many sites as electrons, which are assumed to be spinless. Each 
site i is assigned a random energy q,, uniformly distributed in the interval -A to A .  
Charge neutrality is maintained by assuming existence of a uniform, positive background 
of charge +e/2 per site. Electrons are allowed to hop between sites through a small 
nearest neighbour hopping term lo. We shall consider the limit e 2 / a o < A  and 
I o  < A so that electrons are strongly loalized with localization length -ao. 

The low energy excitations of this system are particle-hole pairs formed by moving 
electrons from occupied states to empty states (Efros and Shklovskii 1975,1976, Shklov- 
skii and Efros 1981). For excitations with energy S w ,  the typical distance between the 
sites of a pair is of order rw - a. ln(2Zo/w) (Shklovskii and Efros 1981) and the average 
distance between two pairs is of order U ~ ( A / O I ) ~ ' ~ %  rw (notice the constant density of 
states for particle-hole excitations) when w < I o  4 A (d = dimension of the system). 
Thus, the majority of states that surround a given excited pair have energy of order 
A S w and their occupations are only weakly affected by the creation of the particle- 
hole pair, which induces energy changes of order ez/ao < A. Therefore, as a first approxi- 
mation, one can replace the system by a dilute gas of randomly distributed particle-hole 
pairs interacting with each other only uia the Coulomb potential (Shklovskii and Efros 
1981) and with tunnelling effects between members of a pair only. 

To describe a particle-hole pair, we consider the two-site Hamiltonian (Shklovskii 
and Efros 1981) 

which describes a particle-hole pair localized at sites rl and r2,  
H1.2 = v1n1 + v2n2 + (e2/r12)n1n2 + Z ( r d ( 4 a 2  + a:al)  ( 2 )  

and Z(r) is the overlap integral. The occupation numbers nj ( j  # 1,2) are assumed to stay 
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unchanged during the excitation process (Shklovskii and Efros 1981). In the presence 
of the external potential u(r )  = Ze2/r, Q, -+ Q, + Ze2/rl and q2 -+ q2 + Ze2/r2. 

As in the ‘classical’ case (Z(r)  = 0), a very interesting property of the above Ham- 
iltonian is the strong enhancement of low-energy densities of states for particle-hole 
excitations due to the Coulomb interaction. Let I +) and 1 -) denote the eigenstates of 
the two-site Hamiltonian (in the absence of the external potential) with E+ > E- so that 
in the ground state, the state I - )  is occupied and the state I+)  is empty. Let E2 = 
E+ + E- + e2/r12 denote the energy when both states are occupied. The probability of 
finding such a pair in the system is given by (Efros and Shklovskii 1975,1981) 

P(17 2 )  = q w 1 ,  rl; w 2 ,  r 2 ) W  - E - ) w 5 2  - E -  - P I  (3) 
where F(vl, rl; w 2 ,  r2) is the probability of having on-site energies w1 at rl and w2 at r2, 
and ,U (we shall set p = 0 in the following) is the chemical potential. At energies 
lVll, W 2 /  % A ,  where A- width of the Coulomb gap (A - Ay3l2(3~) andAy2(2~)  (Efros 
and Shklovskii 1975, 1976) where y = ( e 2 / a o ) / A ) ) ,  Fis  essentially a constant, given by 
F - ( 2 A ~ g ) - ~ .  In this case, it can be shown using equation (3) that the density of states 
for a particle-hole excitation with energy w is given by p ( o )  - (0 + e2/r,) (Shklovskii 
and Efros 19Sl), whereas for a non-interacting Fermi glass, p ( w )  - w .  This estimate 
breaks down when Ivl(, /W21 < A ,  when the probability density F is reduced by the 
presence of the Coulomb gap (e.g. F - v :~) ;  in 3D), resulting in a weaker density of 
states p ( w )  - (e2/r,)2d- and 2D and 3D. A straightforward analysis shows that the effect 
of the Coulomb gap is important only when w s wo, where e 2 / r w ,  - A. Physically, in 
the presence of Z(r), the minimum excitation energy for a particle-hole pair separated 
by distance r is  Z(r) (when VI = v2) .  Thus for excitation energy w ,  a pair is excited only 
when the distance between the two sites of the pair is of order r > rw. At energies 
w < wo, I ,  % e2/A and the Coulomb interaction between the pair is too weak to com- 
pensate for the Coulomb gap. Notice that in the ‘classical’ case Z(r) = 0, the size of 
particle-hole pairs is independent of their energy (Efros and Shklovskii 1975,1976). As 
a result, the above effect is absent and we always have p ( w )  approximately constant as 
w+ 0. 

Because of the much larger density of states, naively one might expect to find a 
stronger ‘orthogonality catastrophe’ effect in Coulomb glass systems than in metals, at 
least in the frequency range w > wo. However, electronic states in a Coulomb glass are 
localized. Therefore, with a short-ranged potential, only a finite number of electrons 
can be affected, in contrast to the case of metals in which all electrons are involved. Thus 
one expects no ‘orthogonality catastrophe’ effect under short-ranged external potentials 
in Coulomb glass systems and the long-range nature of the potential is crucial. As a 
consequence, dimensional dependence of the final result is also expected. 

Let I+’) and I - ’ )  denote the corresponding eigenstates (cf I + )  and I - ) )  of the two- 
site Hamiltonian when the external potential u ( r )  is present. It is straightforward to 
show that 

1 ( + 1 - ’ > 1 2  = [1(r*2)2(Au + r’ - r)2/rr’(r’ + w 2  - VI - A , > ( r  + v2 - V I 1 1  (4) 
where 

= [ (v2 - w l ) 2  + 41(r12)211/2 

r’ = [ ( V 2  - q l  + A,)2  + 4Z(r12)2]1/2 

A u  = u(r2) - u(r l )  = Ze2/r2 - Ze2/r l .  
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Now, making the ‘dilute particle-hole gas’ approximation, and neglecting inter- 
actions between particle-hole pairs (we shall discuss the effect of screening later), our 
Coulomb glass system reduces essentially to a system of a non-interacting Fermi gas of 
localized states. Therefore, we can use equation (1) to estimate the overlap integral 
between the two ground states, where II denotes an empty localized state in the absence 
of an external potential, and n’ denotes an occupied state in the presence of a potential, 
with IAn,,I2 given essentially by equation (4). We shall estimate the integral in the 
following. 

First of all we distinguish between two kinds of pairs: 

(i) those pairs in which the sign of q2 - q1 remains unchanged when an external 

(ii) those pairs in which q2 - V I  changes sign. 
potential is applied, i.e., (q2 - q1)(q2 - ql  + u(r2) - u(r l ) )  > 0, and 

In the absence of quantum mechanical tunnelling Z(r), only the second kind of pairs 
contribute where electrons move to new sites which are lower in energy in the external 
potential. This is just the polaron process discussed by Efros and Shklovskii (1975,1976). 
In the present case, for weak external perturbations (e2/ao 6 A), the first kind of pairs 
have typically small and their contribution can be estimated by their associated 
sum (Anderson 1967) S = Xnn,/Ann,/’, where (GIG’) = 

More interestingly (and usefully), we estimate the quantity 

which determines the long-time behaviour of the Green function describing the removal 
(or addition) of an electron to the Coulomb glass system (Mahan 1974, 198l), 
G(t) - e-$(-I/jr) as t+ =. Fourier transforming, we obtain the spectral function of the 
Green function at small o, which can be observed in, for example, a photo-emission 
experiment on deep-core electronic states. 

Since s involves sums over a large number of states randomly distributed in space, 
we shall estimate it by calculating its ensemble average, i.e., 

S ( 4  = i:, dV1 i” W 2  1 d r ~  I dr2 P(1,2) l ( + l - ’ ) l ? l , , 2  fW+ - E - ,  - 0) 
max(yr 1 . V i  - A  

(7) 

where 1 ( + 1 - ’ ) 1 2  is given by equation (4) and P(1,2) is given by equation (3). Notice that 
the restriction to the first kind of pair is built into the limit of integration over q2. Integral 
(7) can be estimated in a manner similar to that of the calculation of AC conductivity by 
Shklovskii and Efros (1981) in these systems. After some lengthy algebra, we find 

where 

~ A ( Q ,  ~ 1 1 ~  = (Ze2rQ/R2)2/ (Q + (Ze2rQ/R2))*.  (8b) 

p ( w )  is the density of states for particle-hole excitation. IA(o, R)I2 - IAnn,l2 when the 
two sites of the pair are located at a distance r ,  from each other, and at a distance R S I ,  
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from the external added charge, giving A, - u(R + ru) - u(R)  - Ze2ru/R2. Performing 
the integral, we obtain for w > wo, 

S(o) L c u ~ 3 / 2 y 2  [ 1 n ( 2 ~ ~ / o ) ] ~ / ~  ( (e2 /ao) /w)  ‘I2 (3D) (9a) 

L cu‘Zy2 [ln(210/w)]2 (2D 1 (9b) 
- constant (ID) (9c) 

and, for w S wo, 

S ( w )  3 cu~3/2[ln(2~~/o)1-3~~((e2/u~)/w)”~ (3D) (loa) 

- Z In (lnw) (2D) (lob) 
- constant (ID) (10c) 

where a and a‘ are constants of order lo-’. 
The effect of screening can be included by replacing u(r)  by usr(r, w) where 

u,,(q, w) = u ( q ) / a ( q ,  w), a(q, w) is the dielectric function. In the limit q+ 0, 
a(q, w)+ 1 + b ( o ) ,  where in 3D, b(w)  - e4ri/(2Aai)2 6 1 for w > wo and 
b ( o )  - ln(1n w)  for o < w o  (Bhatt and Ramakrishman 1984). Since in 3 ~ ,  the orthogonal 
catastrophe effect is dominated by the factor ((e2/ao)/w)1’2, the additional In w term is 
not going to change the result qualitatively. In 2D, however, a similar analysis indicates 
that although $(U) remains unchanged for w > wo, the Z ln(1n o) term is destroyed by 
screening at w < wo, indicating that there is no true orthogonality catastrophe in 2 ~ .  
The physical reason for weak screening is that within the two-site Hamiltonian, the 
system can be considered as a dilute gas of localized particle-hole pairs, where isolated 
charges are rare (Coulomb gap). Thus instead of thinking of the system as a collection 
of point charges, one should think of it as a collection of dipoles. The interaction between 
dipoles is weak, which results in the observed weak screening. 

There are several interesting features worth noticing in these results. First of all, we 
predict a true orthogonality catastrophe effect only in 3D (e-S + 0) .  Secondly, the strong 
enhancement in the density of states p ( o )  and the long-rangeness of the potential are 
both crucial in the present problem. In fact, it is easy to show from equation (8) that 
there exists no orthogonality catastrophe in any dimension if p(w) - w or if we let 
A(S2, R)  = 0 for R > R, (R, = range of the potential). Another interesting result is that 
S is not proportional to Z 2  for small Z ,  so that there exists no linear response regime. 
This is a direct effect of the long-range potential, as can be seen by evaluating integral 
(8). The difference in S(w) for w above and below wo can be understood quite easily. 
The inclusion of the Coulomb gap introduces factors of order [ln(2Zo/w)]-(2d-’) 
into p(w). In 3 ~ ,  the orthogonal catastrophe effect is dominated by the factor 
((e2/ao)/w)1’2, and is not affected qualitatively by the inclusion of additional logarithmic 
terms. In ZD, however, the orthogonal catastrophe effect itself exhibits logarithmic 
divergence. Thus the presence of the Coulomb gap has a strong effect on its behaviour. 

The second kind of pair is a generalization of the polaron process (Efros and Shklov- 
skii 1975,1976) to the case forZ(r) # 0. They have typically large A,,, and thus contribute 
a factor of order dM, where 6 is a number of order lo-’ and M is the number of such 
pairs found in the system. The number M can be estimated in a manner similar to that 
of the estimation of the polaron gap by Efros (1976). We find that their contribution is 
similar in magnitude to that from the first kind of pair except that it is smaller by a factor 



10210 Letter to the Editor 

of order ln(2Zo/o) (2D and 3D). Thus the qualitative results obtained from process (i) 
remain unaffected. 

Experimentally, our results indicate that the orthogonality catastrophe effect will be 
observable in 3~ and 2~ systems, with qualitatively different behaviours. In a photo- 
emission experiment on a deep core electronic state with energy Eo (see e.g. Hollinger 
et a1 1985), the sharp emission line will be broadened asymmetrically. In 2 ~ ,  a power 
law type behaviour for the spectral function will be found in the frequency range 
o 5 w, + E,, saturating at w - w o  + Eo,  and leaves a &function peak with reduced 
weight at w - Eo. In 3D, the &function peak in the spectral function at w = Eo will be 
completely suppressed, resulting in a finite, broad spectral function distributed at the 
frequency range Eo + min(2Zo, e2/ao) 3 w 5 E,, which is asymmetric (A(o)  = 0 for 
o < E,) instead of a simple Lorentzian lineshape. The orthogonality catastrophe effect 
also leads to a further broadening of the Coulomb + polaron gap in the one-particle 
density of states. However this effect is difficult to observe experimentally. 

We would like to make a few final remarks here. To simplify the study, we have 
introduced the dilute particle-hole gas approximation for a Coulomb glass system 
neglecting the interaction between particle-hole pairs. The validity of these approxi- 
mations is based on physical arguments which unfortunately are hard to justify rigor- 
ously. Another crucial approximation in our analysis is the replacement of s by its 
average. To test this approximation, we have evaluated the mean square fluctuation (s2) = ((s - (3))’) and have found that (s’) S (s) to the leading l / w  dependence, 
suggesting that the mean (s) is a good approximation for s in our study. 

We find that a little quantum mechanical tunnelling, in combination with Coulomb 
interaction, leads to an orthogonality catastrophe type of effect in Coulomb glass 
systems. This effect can be observed in photo-emission experiments on deep core 
electronic states, which would provide us with an alternative way of confirming the 
theoretically predicted Coulomb correlation in Coulomb glass materials. (This effect is 
absent in a non-interacting Fermi glass, see discussion after equation (9).) This is the 
main result of the paper. 

The author thanks P A Lee for very helpful comments and discussions. This work is 
supported by the National Science Foundation under Grant No. DMR-8521377. 
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